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Abstract—Learning 3D representations of point clouds that
generalize well to arbitrary orientations is a challenge of practical
importance in domains ranging from computer vision to molecu-
lar modeling. The proposed approach uses a concentric spherical
spatial representation, formed by nesting spheres discretized
the icosahedral grid, as the basis for structured learning over
point clouds. We propose rotationally equivariant convolutions
for learning over the concentric spherical grid, which are in-
corporated into a novel architecture for representation learning
that is robust to general rotations in 3D. We demonstrate the
effectiveness and extensibility of our approach to problems in
different domains, such as 3D shape recognition and predicting
fundamental properties of molecular systems.

I. INTRODUCTION

Real-world 3D point cloud data today come from a variety
of sources, with examples such as LiDAR sensors, RGBD
cameras, and even snapshots from molecular simulations.
Learning suitable representations of point clouds for data-driven
modeling is well-motivated by applications spanning different
domains, such as autonomous vehicles, scene understanding,
and molecular modeling. However, it remains challenging
and yet important to be able to generalize well to any 3D
orientation of point clouds. Many different methods have been
proposed over the years for structured learning over point cloud
data [1]–[6], but many of these methods likewise suffer from
catastrophic loss of performance when encountering arbitrarily
oriented data at test time. One path to addressing this problem
is to introduce rotations in training. While augmenting training
in this manner is helpful, it has disadvantages of reducing
training and model parameter efficiency, and furthermore there
a significant performance gap remains.

Instead of relying on augmentation, an alternative strategy
is to extract initial features that are rotationally invariant, from
the input. This can be achieved using hand-crafted descriptors
[7]–[12] or local reference frames [13]. Since the inputs to the
model are invariant to rotation, then so is the output. While
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this strategy effectively eliminates the performance gap for
non-rotated vs. rotated data, their absolute performance is also
considerably lower compared to what was previously achievable
(without invariant features). However, extracting rotationally
invariant features from the input in a hand-crafted manner
may significantly restrict what the model is able to learn, as
important spatial relationships may be irrecoverably lost.

Another strategy is to incorporate rotations into the design
of the model itself, which is the principle adopted by this
work. Specifically, we focus on designing model layers which
are equivariant to rotations. Broadly speaking, this property
is satisfied if a rotation on the input feature space of a
layer results in a corresponding rotation on its output feature
space. Equivariance allows preservation of the input geometry
throughout layers of the model, an advantage in hierarchical and
descriptive feature learning. This principle already underpins
the success of many models in the 2D domain, such as
the equivariance of convolutional neural networks (CNNs)
to translations [14] and other symmetry groups [15].

We propose a novel model, the Concentric Spherical Neural
Network (CSNN) that is equivariant to 3D rotations and suitable
for point cloud analysis. The design of CSNN centers around
two main components: (1) a new 3D spatial grid structure
and (2) equivariant convolutional layers. The proposed spatial
structure is formed by nesting multiple spheres, each discretized
by the icosahedral grid. The icosahedral grid is desirable as it
results in a highly regular spatial sampling of the sphere. To
learn over the concentric icosahedral grid, we propose distinct
intra-sphere and inter-sphere convolutions which are combined
to learn features within and between spheres. The resulting
convolutions are rotationally equivariant and also scalable,
scaling linearly with respect to the grid resolution.

We experimentally evaluate CSNN on two different types
of problems: (1) 3D shape recognition and (2) molecular
modeling. For the former problem, the goal is to correctly
classify benchmark 3D that can appear in any orientation. For
the latter problem, the objective is to predict the electronic
density of states, a fundamental property of atomistic systems
that is also invariant to rotation.
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To summarize our contributions: (1) We propose a new
model to address the problem of generalizing to rotations in 3D
representation learning through design of a concentric spherical
structure and equivariant convolutions, (2) experimentally
demonstrate the effectiveness of our approach by improving
state-of-the-art for problems of 3D shape recognition and
resolving electronic structure of atomistic systems, and (3)
make our implementation and datasets publicly available at
https://github.com/foxjas/CSNN for reproducibility.

II. BACKGROUND AND RELATED WORK

This section provides background on the principle of
rotational equivariance and further discussion of related work.
To begin, we define a feature map h : B3 → R as a function
which maps positions on the unit ball (spherical volume) to
scalar features (without loss of generality). We define a rotation
R on the feature map by the following operator:

[LRh](x) = h(R−1x) (1)

In other words, each position x ∈ B3 is related by rotation to
a corresponding position in the original feature map.

The space rotations is characterized by its group R; for
example, the space of all 3D rotations, which is continuous,
belongs to the SO(3) group. A layer Φ is equivariant to the
rotation group R if it commutes with all its rotations:

Φ[LRh](x) = [LR(Φh)](x), ∀R ∈ R (2)

In other words, feeding a rotated input through the layer it the
same as feeding the original input to the layer and rotating its
output. Equivariance of layers ensures that their composition
is also equivariant, making the entire model equivariant. To
make the entire model invariant to rotation, it suffices to apply
an appropriate global pooling operator after the equivariant
layers, prior to output.

Equivariant models have been proposed for different struc-
tures in the 3D context. Most related to our work is Spherical
CNNs [16]–[21], designed for convolutional feature learning
over spherical images. However, they are not suitable for direct
application to point clouds, with a fundamental limitation being
the loss of information in constraining spatial representation
from 3D domain to a 2D manifold. Some efforts have also
been made to extend Spherical CNNs to point clouds [22],
[23]. Rao et. al. [22] first learns a projection of points to the
sphere, before spherical convolutions. You et. al. [23] proposes
a spherical coordinate voxel grid as the basis for applying
spherical convolutions, which has limitation in non-uniform
spherical resolution and performance. Compared to prior work,
our approach combines the use of a highly uniform 3D spatial
grid with design of convolutions for directly and efficiently
learning features over concentric spheres, and achieves state-
of-the-art performance in practice.

III. ARCHITECTURE DESIGN

The primary goal of our proposed approach is to learn
complete representations of 3D point clouds in a rotationally
equivariant and scalable manner. To achieve this goal, we first

propose a spatial structure of concentric spheres at different
radii, each discretized by the icosahedral grid. The proposed
construction organizes 3D space volumetrically by spherical
and radial components. The icosahedral grid provides a highly
regular sampling of the sphere, which provides efficient use
of spatial resolution and also permits design of scalable and
rotationally-equivariant convolutions. We propose using two
separate convolutions together to learn volumetric features
over concentric spheres: (1) graph-based convolution to learn
features within spheres, and (2) co-radial convolutions to learn
features between spheres. The proposed convolutions can be
extended to different spatial scales via pooling and downsam-
pling (following the regular properties of the icosahedral grid),
resulting in the hierarchical convolutional architecture of Fig.
1.

A. Concentric Spherical Discretization

In this section we explain in detail our method of discretiza-
tion by concentric spheres. We further present our approach to
converting arbitrary point cloud data to initial feature channels
over this spatial structure.

Concentric Icosahedral Grid. The initial icosahedron has
12 vertices forming 20 equilateral triangular faces. To increase
grid resolution, each face can be sub-divided, with resolution
scaling as |V | = 10 ∗ 4l + 2 (l is target discretization level).
We implement concentric spheres by stacking R identical
icosahedral grids to form the radial dimension (see Fig. 3).
Assuming normalization to unit radius, concentric spheres
are uniformly distributed over radii [ 1R ,

2
R , ..., 1]. Assuming

single-channel feature map, the resulting grid is the matrix
H ∈ RR×|V |, where each vertex is indexed by the sphere it
belongs to, and its position on the sphere. The icosahedral
discretization results in a highly regular spatial sampling on
the sphere, which provides very uniform spherical resolution.
While resolution is not uniform between spheres (sampling
density is higher for spheres closer to the center), this difference
is largely explained by a scaling factor, and does not inhibit
the design of rotationally equivariant convolutions.

Point Cloud to Concentric Spheres. We now consider
the problem of converting a point cloud P ∈ RN×3 to a
concentric spherical feature input H ∈ RR×|V |×C , where C is
number of channels. While the concentric grid representation is
defined discretely, the space point positions are continuous. To
summarize the contribution of points in a continuous fashion
we use a Gaussian radial basis function (RBF)

f(x) =
N∑
j=1

φ(||x− Pj ||22) (3)

where N is the number of data point and φ = exp(−γr2).
In practice we limit computation to a local neighborhood of
points (instead of considering all points), and choose γ such
that contributions of points on the border of the neighborhood
decay to a small value. Instead of computing the summation in
Eq. 1 with respect to all points, for each data point we update
the features of vertices in a local neighborhood. Restricting
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Fig. 1: Example architecture with three concentric spheres. Graph convolutions are followed by co-radial convolutions, at
each level of spherical resolution. Co-radial convolution (in this example) has spatial window of three co-radial vertices, with
padding applied to maintain radial dimensions across convolutions. Each arrow indicates vertex neighborhood pooling and
downsampling, after which convolutions proceed with new filters at coarser spatial resolution. Global pooling is applied to
obtain final feature representation.

Fig. 2: Illustrative example of converting point cloud to concentric icosahedral grid (2D cross-section view). (a) An example
point cloud (black points) is contained by a maximal radius sphere. (b) The spherical volume is further partitioned into 6
concentric spheres, co-radially. (c) Each point has a contribution to vertices in a local neighborhood (gray circles), resulting in
(d) single channel feature per vertex (gray square). (e) Co-radial vertices are further grouped, resulting in smaller subset of
concentric spheres with multi-channel inputs. In this example, grouping results in 3 concentric spheres where vertices have 2
input channels each.

computation to fixed size local neighborhoods instead of
computing the summation in Eq. 1 with respect to all points
means the overall point cloud to concentric spherical grid
conversion is O(N). We refer to Fig. 2(a)-(d) for illustrative
example of the conversion.

Instead of restricting to 1-to-1 assignment of vertices to their
corresponding sphere, we can group further group vertices into
smaller number of spheres by concatenating features of co-
radial vertices as input channels, as shown in Fig. 2(e). Letting
R′ be the initial number of spheres, grouping the features from
co-radial vertices across R groups results in feature tensor
H ∈ RR×|V |×R′

R , where R is the number of spheres represented
spatially, and R′

R is the number of spheres represented via input
channels. The proposed grouping mechanism gives ability to
represent radial resolution either spatially or input-channel
wise. This flexibility is beneficial for tackling computational
and memory limitations, as the complexity of convolutions
scales with the spatial dimensions of the grid rather than initial
input channel dimensions.

B. Concentric Spherical Convolutions

In this section we present our implementation of rotationally
equivariant intra-sphere and inter-sphere convolutions for
feature learning. Proof of equivariance is further provided
in Sec. III-D.

Intra-sphere convolutions. The objective for intra-sphere
convolutions is to learn localized features within each sphere,
in a rotationally equivariant fashion. We use localized graph
convolutional filters for this objective. We construct the
undirected graph G(l) = (V (l), E(l)) corresponding to level l
icosahedron I(l). The vertex set V (l) corresponds one-to-one
with the vertex set of I(l), but projected to unit sphere. To form
the edge set E(l), we connect vertices of V (l) corresponding
to face edges of the icosahedron. The resulting graph is highly
regular, as all vertices are degree six beyond I(0), and all edges
within each sphere are also approximately equidistant. We
adopt the graph convolutional operator from [24] (but omitting
degree-based normalization), and introduce additional notation
to define graph convolution in our context. Let H ∈ RR×|V |×C

denote a C channel tensor of features, and Z ∈ RC×F be
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Fig. 3: (a) The icosahedral grid is formed by vertices of
equilateral triangles (top), which can be recursively sub-
divided to form a higher resolution grid (middle). This also
defines a natural vertex neighborhood and hierarchy for
pooling and downsampling, where yellow highlighted vertices
(bottom) are involved in pooling. (b) Two spherical grids
are stacked, corresponding to consecutive concentric spheres.
Graph convolution involves vertices within the same sphere
(convolution neighborhood highlighted orange). Conversely,
co-radial convolution involves co-radial vertices between the
two spheres (green dotted line).

learnable weights, where C and F are input and output channel
sizes. We use to N(u) denote neighbors of vertex u in graph
G. We also introduce subscript t to indicate convolutional
layer number, i ∈ [0, R − 1] to index the radial dimension,
and u ∈ [0, |V | − 1] to index the vertices. The layer t + 1
intra-sphere convolution output for vertex u of sphere i is then
given by Eq. 4, where σ is a nonlinear activation function:

H(t+1)
i,u = σ(

∑
v∈N(u)

H(t)
i,vZ

(t)) (4)

Inter-sphere convolutions. We introduce co-radial convo-
lutions for learning features between spheres. To achieve this,
we view co-radial vertices as an ordered sequence and use
1D convolution to learn localized features between spheres
(see Fig. 3(b) for illustration). We introduce some additional
notation to describe co-radial convolutions: let K be the size of
the 1D convolution kernel window. We pad inputs in the radial
dimension such that the number of spheres R is maintained
spatially across convolutions. Let W ∈ RK×C×F be a tensor
of shared parameters, where C and F are input and output
channel sizes. The layer t+ 1 co-radial convolution output for
vertex u of sphere i is:

H(t+1)
i,u = σ(

bK2 c∑
k=−bK2 c

H(t)
i+k,uW(t)

k+bK2 c
) (5)

C. Complexity Analysis

The neighborhood size of both graph and co-radial convolu-
tion filters are constant, as are their filter parameters. Therefore
the overall complexity of both intra-sphere and inter-sphere
convolution is O(R× |V |), where |V | is the resolution of the

icosahedral grid, while the factor R corresponds from stacking
multiple such grids. In other words, the convolutions scale
linearly with respect to total grid size.

D. Equivariance of Convolutions

Since our work is based on the icosahedral grid, we focus
equivariance analysis with respect to the icosahedral rotation
group I , a subgroup of SO(3) containing 60 discrete symme-
tries. We start with the definition of intra-sphere convolution
for single-channel feature map (without loss of generality):

Φh(xi,j) = σ(θ
∑

xi,k∈N(xi,j)

h(xi,k)) (6)

where xi,j is the position corresponding to a vertex in the
concentric spherical grid, indexed by radial and spherical
dimension. Additionally, θ is trainable parameter, N(xi,j)
denotes positions of vertices in the neighborhood of the vertex
at xi,j , and σ is nonlinearity function. Equivariance of the
proposed layer is shown as follows:

Φ[LRh](xi,j) = Φh(R−1xi,j) (7)

= σ(θ
∑

x̃i,k∈N(x̃i,j)

h(x̃i,k), x̃i,k = R−1xi,k

(8)
= [LR(Φh)](xi,j) (9)

The second equality follows from rotation R ∈ I being an
isometric transformation that maps the icosahedral sphere onto
itself. This means that each vertex position xi,j of the rotated
feature map corresponds to an vertex unique position R−1xi,j

in the original feature map, and that vertex neighborhoods are
also preserved. The final equality follows from applying Eq. 1
and Eq. 6.

Next, we show that intra-sphere convolution is also rotation-
ally equivariant:

φh(xi,j) = σ(

bK2 c∑
k=−bK2 c

h(xi+k,j)βk+bK2 c
) (10)

where K is the size of the co-radial kernel and β denotes
trainable parameter. We show that the convolution φ commutes
with rotation:

φ[LRh](xi,j) = φh(R−1xi,j) (11)

= σ(

bK2 c∑
k=−bK2 c

h(x̃i+k,j)βk+bK2 c
) (12)

= [LR(φh)](xi,j) (13)

where x̃i+k,j = R−1xi+k,j . The second equality follows
trivially from the fact that co-radial vertices remain co-radial
after shared rotation, thereby preserving neighborhood for
convolution.
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IV. EXPERIMENTS

We demonstrate the effectiveness of our approach for 3D
object classification in Sec. IV-A, and applied to resolving
fundamental properties of electronic structure in materials
in Sec. IV-B. We further study important components to the
performance of our approach in Sec. IV-C. Each experiment
was run on a single NVIDIA V100 GPU.

A. Point Cloud Classification

We consider the ModelNet40 3D object recognition task,
where CSNN uses the centroid of each object as the rotational
reference for evaluation and the center for global feature
extraction. We use the pre-processed point clouds from [2],
with 1024 points each. In total there are 12308 shapes from
40 categories, with 9840 shapes used for training and 2468 for
testing.

Architecture and Hyperparameters. See Fig. 4 for
overview of model architecture and layers. Batch normalization
and ReLU activation is applied after each convolution and
hidden layer. The point cloud is converted to initial concentric
spherical features following the procedure in III-A. We trained
separate models for the two types of rotations evaluated: one
for z-axis aligned rotations, and one for general SO3 rotations.
For sake brevity, we only detail the hyperparameters for model
trained on SO3 rotations, and refer to our codebase for details
on the other model. In our experiment, CSNN uses L = 4,
R = 20, C = 8, corresponding to level 4 icosahedral resolution
(2562 vertices/sphere), 20 spatial spheres, and 8 input channels
per spatial sphere. The model is trained using Adam optimizer
for 60 epochs, batch size of 32, initial learning rate 3.9e-4
with decay factor 0.1, and early termination when learning
rate falls below 1e-5. For regularization, CSNN uses dropout
of 0.14 and weight decay of 2.7e-7. We follow prior work in
augmenting training with random translation, re-scaling, and
positional jitter of input point clouds. Specifically, we apply
random uniform translation in the range of [−0.1, 0.1], random
Gaussian noise for positional jitter with standard deviation of
0.01, and random uniform re-scaling by a factor of [0.8, 1.2]
applied independently to each axis.

Results. For experimental evaluation, we consider two types
of rotations in training and/or testing, following convention
from earlier work: z-axis aligned rotations and arbitrary
rotations (SO3). The latter is the most general and challenging.
We compare with related work organized into three categories,
based on their strategy for handling rotations. Results from
running each baseline are presented in Table I. Our method
achieves state of the art performance in z/z and SO3/SO3
settings, when training and testing draws from the same space
of rotation. Our approach is not best, but remains competitive
even when restricted to z-axis rotations while testing on general
rotations (z/SO3 setting). This difference is likely due to
artifacts of discretization from the initial mapping of points to
the concentric icosahedral grid, which is largely mitigated by
SO3 rotations in training. The weakness of methods which rely
solely on training augmentation [4]–[6] is highlighted when
testing on arbitrary rotations. Methods like RI-GCN [13] rely

Method Strategy Params z/z z/SO3 SO3/SO3

PointNet [2] Augmentation 3.5M 87.5 22.9 84.9
DGCNN [4] Augmentation 1.8M 90.7 35.5 89.0
ShellNet [6] Augmentation 470K 89.2 22.9 84.8
KPConv [5] Augmentation 6.1M 90.0 27.5 85.0
SPHNet [12] Invariance 2.9M 86.5 85.6 87.0
RIConv [11] Invariance 0.7M 87.0 87.0 87.2
RI-GCN [13] Invariance 4.4M 89.2 89.3 89.1
SFCNN [22] Equivariance 9.2M 90.8 84.2 89.6
PRIN [23] Equivariance 1.7M 76.5 81.9 81.0

CSNN Equivariance 4.0M 91.0 88.3 90.1

TABLE I: ModelNet40 object classification overall accuracy,
considering two types of rotations: z-axis aligned, and more
general SO3 rotations. For example, SO3/SO3 indicates
training and testing with arbitrary rotations of input data.
Strategy refers to how rotations are handled. Our approach
(CSNN) achieves state-of-the-art performance in two out of
three settings.

on designing invariant features at input to achieve rotational
invariance, and so performance is consistent regardless of
rotations seen in training. However, the overall performance
of invariant methods is lower across settings compared to
equivariant methods such as ours and [22], suggesting this
form of invariance comes at a cost.

B. Resolving Electronic Structure of Materials

Accurate molecular dynamics simulation from quantum-
mechanical principles is critical to many applications, such
as the design of advanced materials or the study of materials’
properties under extreme conditions. However, accurately
scaling simulations to systems beyond hundreds of atoms is a
problem of primary concern. The main bottleneck appears when
solving the quantum mechanical questions, which provides
fundamental properties describing the electronic structure.
Recent ML efforts have tried to overcome this issue by
effectively predicting the electronic structure (output) from the
atomic structure (input) [25]–[29]. Here we aim to effectively
and accurately predict the electronic density of states (DOS),
a rotation-invariant quantity describing the energy distribution
of the electrons within an atomic snapshot. From the DOS,
the band energy, an essential component of the total energy
of the system, can be calculated. Due to the atomic nature of
the problem, we propose learning atom-centered descriptors of
local environments end-to-end, enabling data-driven and more
flexible representations compared to hand-crafted descriptors
of prior work of [27], [30]. We further introduce and make
publicly available a dataset consisting of geometrically diverse
structures of graphene, and show that the use of CSNN lowers
overall error for calculating band energy, and increases the
number of structures resolved to chemical accuracy.

Dataset. The datasets consists of eight different types of
graphene allotropes: graphene sheet, graphite, three different
fullerenes, and three single-walled nanotubes–see Fig. 5a).
There are 200 atomic snapshots per structure, generated from
snapshots of DFT molecular dynamics simulations run using
VASP [31], [32]. The number of atoms per snapshot range from
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Fig. 4: Architecture for ModelNet40 classification. Number of output channels are shown for each layer, where applicable.
L = 4 is initial level of discretization of icosahedral spheres. Radial convolution uses kernel size of 3 for spatial size (co-radial
vertices).

20 up to 152. After alignment with respect to the vacuum energy
used as global reference, the resulting DOS curve is binned
into 310 windows of 0.1 eV each, from -30 to 1 eV. We refer
to [27] for more details on the data generation and preparation
process. In total there are 1280 training, 320 validation, and
160 test snapshots.

Problem Formulation. Each input is a snapshot of positions
of carbon atoms, represented by 3D coordinates. Additionally,
the atoms are located inside a unit cell with periodic boundary
conditions. The prediction target, the DOS, is a fixed dimension
vector y ∈ R310. We evaluate the predicted DOS by using it
to compute an important downstream property of interest, the
band energy:

Eband =

∫ EF

−∞
DOS(ε)εdε (14)

where ε is the energy and EF is the Fermi level. The integration
has an upper bound of EF , a physical limit representing the
highest energy of the bound electrons. EF is calculated as
the energy at which the cumulative integral of the DOS curve
equals the total number of electrons in the system. Since this
limit is a function of the DOS integral and electron number,
we introduce an additional prediction target in terms of the
cumulative DOS (FDOS). Including the FDOS during training
enables better resolution of EF and lowers band energy error.
The resulting objective function to minimize is:

L = α ∗ LDOS(y, ŷ) + (1− α) ∗ LFDOS(y, ŷ) (15)

where ŷ is the predicted DOS and α controls the relative
weighting between DOS and FDOS mean squared error losses.

Architecture and Hyperparameters. To model the total
DOS of a system, we predict the contribution of each atom to
the overall DOS, where each atom’s contribution is a function of
its local atomic atomic environment. The closer the neighboring
atoms are to the target, the stronger the effect they have on
the target’s properties. To account for this effect, a fixed cutoff
radius of 7 angstroms is used in experiments, eliminating
the effect of neighbors that are further away. Our approach
is then applied to learn a suitable descriptor of each local
environment for mapping to atom-wise DOS contributions,
which are then summed to obtain the overall DOS. This
workflow is illustrated in Fig. 5b. The input to CSNN is
then locally-centered point clouds, corresponding to atom-
centered environments. To convert a point cloud to concentric
spherical feature map, each point is assigned a contribution
to its nearest vertex. The contribution is determined as the
inverse of the point’s distance from center, based on the

aforementioned neighbor effect. We refer to Fig. 6 for details
of model layers. In our experiment, CSNN uses L = 3, R = 1,
C = 32, corresponding to level 4 icosahedral resolution (642
vertices/sphere), 1 spatial spheres, and 32 input channels per
spatial sphere. The main consideration for using R = 1 was
computational and memory efficiency, as pushing co-radial
information to input channels does not require adding additional
spatial dimensions. We also tested a channel-wise single-sphere
(C = 1) version of the model which performed considerably
worse at 0.036 eV/atom mean absolute error, highlighting
the need for concentric spherical information. The model is
trained using Adam optimizer for 1500 epochs, batch size
of 32 snapshots, initial learning rate 5e-4 with decay factor
0.1 and early termination when learning rate falls below 1e-5.
A weight decay of 1e-7 is applied for regularization. Using
α = 0.1 provided best performance for weighting DOS and
FDOS losses. A single 1D convolution with kernel size of 3
is applied to smooth each atom’s predicted DOS contribution
prior to summing.

Results. We present our results in Table II. AGNI [33], [34]
is a hand-crafted descriptor method for extracting rotationally
invariant features of atomic environments applied to this
problem and dataset in [27]. SchNet [9] is a rotation-invariant
neural message passing model for learning atom-centered
features, and is considered a strong baseline for many atomistic
ML problems. Our rotationally equivariant approach achieves
the lowest mean error in resolving band energy on the test set,
reducing overall error by 24% relative to previous best. Our
approach also demonstrates the ability of learned descriptors
to improve over the performance of hand-crafted descriptors
for this problem. Since the dataset is composed of different
types of geometries, we further group test error by each type.
Our approach achieves the lowest mean error on six out
of eight structures. In absolute terms, it is also important
for methods to achieve achieve chemical accuracy (0.043
eV/atom) to be of practical use, a widely adopted threshold in
computational chemistry. Our approach is also able to resolve
more structure (seven of eight) to chemical accuracy compared
to prior approaches.

C. Performance Analysis

In this section we analyze the number of concentric spheres, a
key component to the performance of our proposed architecture.
We evaluate on the ModelNet40 dataset for SO3/SO3 test
accuracy. To rule out potential impact of other factors, the
number of trainable model parameters and all other training
hyperparameters were kept identical. Recall that the concentric
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(a) (b)

Fig. 5: (a) Illustrations of each type of carbon structure present in the dataset. Only atom position information is available for
experiments; bonds shown are illustrative only. (b) From left to right: each atom’s local atomic environment is the input to our
proposed approach for learning DOS. CSNN (shared across inputs) learns an atom-centered descriptor from each environment,
which is used to predict an atom-wise DOS contribution. All atoms’ contributions are summed to obtain total DOS of the
atomistic configuration.

Fig. 6: Architecture for DOS prediction. Number of output channels are shown for each layer, where applicable. L = 3 is
initial icosahedral spherical resolution. 1x1 convolution is applied within channels, without spatial component. 1D convolution
is applied to smooth the predicted DOS curve, represented by output energy bins.

Model Type Params Graphene Graphite C20 C40 C60 C(6,4) C(9,9) C(8,0) Overall

AGNI [33] Hand-crafted 392K 0.021 0.053 0.052 0.030 0.010 0.046 0.027 0.026 0.033
SchNet [35] Learned 976K 0.042 0.045 0.065 0.030 0.022 0.022 0.033 0.019 0.035

CSNN Learned 1.06M 0.013 0.039 0.051 0.033 0.017 0.020 0.014 0.015 0.025

TABLE II: Comparison of different models applied to predicting density of states (DOS). We report the mean error (eV/atom)
in resolving band energy using predicted DOS aggregated over all snapshots, as well as by structure type. CSNN achieves
lowest overall error, as well as lowest error in six out of eight structures.

Fig. 7: Number of concentric spheres used (spatial) vs.
classification accuracy. Evaluation is performed on ModelNet40
dataset for arbitrary rotations of samples.

spherical mapping can be represented in two different ways:
(1) input channel-wise or (2) spatially. We focus on isolating
the impact of the number of spatial spheres, as this directly
impacts the cost of convolutions and would need justification.
We use variable R to denote the number of spheres represented
spatially, while the number of spheres represented via input
channels is fixed at C = 1. We present results in Fig. 7,

Spheres 1 2 4 8 16 32

Time/epoch (s) 50 66 86 83 104 205

TABLE III: Time per training epoch in seconds vs. number of
concentric spatial spheres.

which show that increasing concentric resolution significantly
improves classification accuracy, with relative improvement of
8.7% from R = 1 to R = 16. We additionally compare the cost
in training time (per epoch) from additional spatial spheres in
Table III. Compared to single sphere, training time is increased
by a factor of 2 for R = 16, which is where accuracy peaks.
From this analysis we observe significant accuracy benefits
from concentric spheres, without incurring prohibitive runtime
costs.

V. CONCLUSION

In this work we present a novel approach, the Concentric
Spherical Neural network, to address the problem of gener-
alizing to rotations in representation learning of 3D point
cloud data. We achieve this by proposing a new convolutional
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approach based on the structure of concentric spheres and
principles of equivariant design. We experimentally demonstrate
the effectiveness our approach applied to different problems in
computer vision and quantum chemistry domains, respectively.
In the former, CSNN improves state-of-the-art on a standard
3D classification benchmark, ModelNet40, in handling arbitrary
orientations of common objects. In the latter, CSNN is used
to more accurately resolve the band energy of carbon-based
materials by up to 24% compared to prior approaches.
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electronic density of states in condensed matter,” Physical Review B, vol.
102, no. 23, p. 235130, Dec 2020.

[31] G. Kresse and J. Furthmüller, “Efficient Iterative Schemes for Ab Initio
Total-Energy Calculations using a Plane-Wave Basis Set. ,” Phys. Rev.
B, vol. 54, no. 54, pp. 11 169–86, 1996.

[32] ——, “Efficiency of Ab-Initio Total Energy Calculations for Metals and
Semiconductors using a Plane-Wave Basis Set.” J. Comput. Mater. Sci.,
vol. 6, no. 6, pp. 15–50, 1996.

[33] V. Botu and R. Ramprasad, “Learning scheme to predict atomic forces
and accelerate materials simulations,” Phys. Rev. B, vol. 92, p. 094306,
Sep 2015. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevB.
92.094306

[34] V. Botu, R. Batra, J. Chapman, and R. Ramprasad, “Machine learning
force fields: Construction, validation, and outlook,” Journal of Physical
Chemistry C, vol. 121, pp. 511–522, 2016.

[35] K. Schütt, P.-J. Kindermans, H. E. S. Felix, S. Chmiela, A. Tkatchenko,
and K.-R. Müller, “Schnet: A continuous-filter convolutional neural
network for modeling quantum interactions,” in Advances in neural
information processing systems, 2017, pp. 991–1001.

Authorized licensed use limited to: University of Illinois. Downloaded on November 18,2023 at 19:38:35 UTC from IEEE Xplore.  Restrictions apply. 


